
Polynomial Hierarchy collapses!

Theorem: If Π2 = Σ2 then Σ3 ⊂ Σ2.

• notations:

� ”Σ2 − formula” :=formula of type ∃x∀yφ(x, y)
� ”Π2 − formula” :=formula of type ∀x∃yφ(x, y)
� ”Σ3 − formula” :=formula of type ∃x∀y∃zφ(x, y, z)

given L ∈ Σ3 , we will show the existence of a poly-time machine,
that for each x ∈ L produces a formula in the form of ∃x∀yφ(x, y) such that

this formula is valid i� x ∈ L.
Proof:

• for each x ∈ L, we can compute a formula ∃x∀y∃zφ′
(x, y, z) such that it

is valid i� x ∈ L.

this can be computed using turing machine denoted as M .

• then, denote the formula - G(y, z) = ∀y∃zφ′
(x, y, z) where x is free.

now, this is not a ”Σ2−formula”, because we have a free variable x here.

• so, we will create new turing machine M0, that given G(y, z) formula, and
assignment for x,

computes new logically − equivalent formula, (where x is with that as-
signment) , with no x as a free variable in it.

it will just do some replacments.

for example, if x = 1, and G(y, z) = (y∨z)∧(x∨y), then M0(G(y, z), x) =
(y ∨ z)

this will be turing machine M0.

• then, for each assignment for x we can compute M0 on G(y, z) and x, and
get a new ”Π2 − formula”.

call it M0(G(y, z), x).

• then we can evaluate ”Σ2 − formula” from it, in polynomial time, using
turing machine M1.

that is because Π2 = Σ2, thus M0(G(y, z), x) ∈ Σ2.

BUT, it is not enough, we need to have this turing machine M1 one for
all formulas of type ”Π2 − formula”.

� that is because, the formula M0(G(y, z), x) varies and depends on
x. so we want to use the same turing-machine for all x.

1

but, we have that, because if Π2 = Σ2, then we have a one reduction
poly-time computable, from any ”Π2−formula” to an appropriate ”Σ2−
formula”.

This reduction function will be called M1.

• thus, M1(M0(G(y, z), x)) is in the type of ∃x′∀y′φ(x′, y′).

we will take only the body of this formula:φ(x′, y′),

this can be surely also computed at a poly-time.

• note also that |x′|, |y′| ≤ |{0, 1}p(|x|)|, where x is our original input, and p
is some polynom.

because all our computations are polynomial-time of the input.

we can do that and replace all occurences of x′, y′ with x′′, y′′ for example,
it does not matter.

• so, we will call the �nally evaluted formula φ(x′, y′).

this formula depends on x thus we can not write that the formula will be
∃x.M1(M0(G(y, z), x)) and so it will be ∃x.∃x′∀y′φ(x′, y′) and thats it,

because it is not true! the formula φ varies with each assignment on x.

• but, what we can do is that:

we will say that, M1 ◦M0 will compute only the body, and we will write
in the begining of the formula: ∃x ∈ {0, 1}p(|x|)∃x′ ∈ {0, 1}p(|x|)∀y′ ∈
{0, 1}p(|x|).
then, the formula it-self, will be the Cook − Levin computation for x as
an input, applying M0 on x and G(y, z), then applying on the output M1,

creating φ(x′, y′), then M2 that computes the logical value of φ(x′, y′),
where x′, y′ as its free variables, inputs, and checking actually if M2 output
was true. so, we actually write the formula: M2(M1(M0(G(y, z), x)), x′, y′) =
true

• then the �nal formula is:

∃x ∈ {0, 1}p(|x|)∃x′ ∈ {0, 1}p(|x|)∀y′ ∈ {0, 1}p(|x|)M2(M1(M0(G(y, z), x)), x′, y′) =
true

note that this formula is not depend on anything but the original formula
which is: ∃x∀y∃zφ′

(x, y, z).

• the �nal formula is Σ2 − formula.

2

