THE MULTIPLICATIVE WEIGHT UPDATES METHOD

URI ZWICK AND HAIM KAPLAN

1. THE BASIC BINARY SETTING

On each of T days, n experts predict “up” or “down”, and we have have to make
a decision according to their predictions.

1.1. The Weighted Majority Algorithm. We choose a parameter 0 < n < %
and assign each expert i an initial weight of w! = 1. At the end of the day we

decide “up” if and only if > predicted up wh >3 predicted down w! . Then we
update the weights:

¢ (1—-n)w! else

t .
t+1 _) Wi i was correct on day t
K]

We also define the cost of each expert at day T to be the number of mistakes he
did until day T. The cost of the algorithm is defined simmilarily.
Theorem 1. For every expert it holds that:
21In(n)

n

Proof. Let W' =3%"" | w! . If MW makes a mistake in day ¢, then the weighted
majority of the experts predicted wrong. Therefore,

1 1 n
Wttt < (2 4 21 = Wt — Yyt
= <2 51 77)) (1 2)

cost (WM,) < 2(1 + n)cost (exp) +

Since W' = n we have (by induction):

Wt+1 < 1— n cost' (W M,)
<n(1-)

The same analysis yields that: W7+ > wi) = (1 - n)cost’ (ezp)

¢ cost® (W M,)
g < < (12 1)
(1—=mn) < < 5

cost*(exp) In(1 — n) < cost'(WM,) In (1 - g) + In(n)

In(1—n) In(n)
t'(WM,) < ———~cost’ ——
cost (WMy) < m(1-2)“" (exp) + A=)
2 1 21
cost' (WM,) < 1 ‘:77 + n(nn) = 2(1 + n)cost (exp) + n(n)
2 2

Notes written by Bar Aschner, all rights reserved for Arazim (©), except for the right to remain
silent, that is saved for Marco.
1

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 2

On the last inequallity we used the fact that + < —In(1 — z) < x + 2?2 for
T E (O, %)

2. THE GENERAL SETTING

On each day we choose a distribution over the experts. Then the cost of each
expert (which is a real number in [—1, 1]) is revealed and we pay the expected cost
according to the distribution chosen.

We start by picking a parameter n € [} The weight of each expert i at day
tis w! . We also get the distribution over the experts:

n
Wt

Where W' = >, w! . m! is the cost of expert i at day t. At the end of the day
we update the costs by getting w!t' = w! (1 —nm!). The cost for the algorithm
at day t is p’ - m?. We define the cost of each expert and the cost of the algorithm
to be the sum of the costs up to day ¢. That is, cost!(MW,) = S1_, p* - m! and

T T

COSt(e‘Tp) = Zt:l mezp'

Theorem 2. For every expert it holds that:

. (wh ... wk)

T

1
cost' (MW,,) < cost'(exp) +n Z(mf)2 + n(n)
n
t=1
Proof.
Wt+1 T Wt+1 T r T
Zln Zln Zpl (1—nmi) | = Zln(l—npt~mt) < —ant-mt
t=1 t=1

O
On the last inequallity we used the fact that In(1 — z) < —z for x < %
On the other hand:
Wt+1 t+1

i Dewp Z In(1 — pm!) — In(n)

In ——

T
> In(n nzm 7> (mh)?
= t=1
We get the result by combining these 1nequaht1es.

Corollary 3. If p is a distribution and |mt| is the vector obtained by taking the
absolute value in each coordinate. Then:

T T T In(n)
Y utnt < Yt 3 |+ 2L
+1 _

If we have a reward r' instead of cost, and updated by using the rule wi™ =
wi(1 +nrt) then:

T

T T
Soptrt =St () - =
t=1 t=1

t=1

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 3

3. LEARNING A LINEAR CLASSFIER

We are given a set of m points a; ...a, € R™. Suppose that there is a non-
negative vector x € R™ such that a; - & > ¢ for all j. The algorithm finds a
non-negative vector u € R" such that 1-u =1 and a; - u > 0 for all j.

The Algorithm: We define p = max; |a;|o .Select n = 3,- We will have an
“expert” for each coordinate. Run the MW, algorithm. In each iteration, if p’ is a
good classifier, stop. Otherewise, let j be the first index such that p*-a; < 0. Let

a
mt = —22,
P

Theorem 4. This algorithm stops after at most % In(n) iterations.

Proof.

T T T In(n)
St 3wty o+ 20
t=1 t=1 =1 n

[

For every day ¢ < T we have a point a(t) such that a;(¢)-p" < 0 and m' = —%.

3t —a;(t) <Y —a(?) 03 a |a(t)] n In(n)
t=1 P t=1 p t=1 p n
0<-L 4 yry 20
n
T < In(n)
n

As required.

4. ZERO SuM GAMES

We talk about 2-player (ROW and COLUMN) games with randomized (mixed)
startegies. Let A be a matrix. ROW has a disribution p over the rows of A,
COLUMN has a distribution ¢ over the columns of A. The expected payoff (row
pays column) is Alp,q] = p'Aqg =3, ; pig; Ali, j] -

4.1. Von Neumann’s Theorem. It holds that:

min max A[p, g] = max min A[p, g] = min max A[p, j] = max min A[, ¢]
P q a P P a i

4.2. Solving Zero-Sum Games Approximately. We want to approximate the
game’s value and the optimal strategies. We assume that A;; € [0, 1] for all ¢, j.
Let v* = val(A) and € > 0. p,q are e-optimal strategies if max; A[p,j] < v* + €
and min; Afi.g] > v* —e. We have an expert for each of the n rows of A. In each
iteration ¢, the algorithm produces a distribution p!. The cost vector m! is the
column j* of A which maximizes A[p?, j]. Note that: p-m® = A[p, j!] > v*.

Theorem 5. If MW, is run with n = 5 for 4122(") iterations, then the best strategy
obtained is € optimal for ROW. If A has m columns then the running time is

0 (mnmen)

62

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 4

Proof. First, we bound the running time of the algorithm.

d In(n)
ZA(pt,j (L+m)>_ Alp* ;

and if T = %2(") then:

H \

T
Z <v +e€

Now we show how to find an e—optlmal strategy for ROW. By the inequality
above, there exists ¢ such that A(p’,j') = min; A(p',j) < v* + e Thus, if ¢
minimizes A(p?, j*) then p' is an e-optimal strategy for ROW. An e-optimal strategy

for COLUMN can also be found. Let g be such that g; |{t] _JH . For every i,

%ZAW) — Ali,q)
t=1

Therefore we get that:

T T

* 1 . 1 . Inn .

vt < TZA(tht) <(1 +’7)TZA(ZaJt) TS Al q) +e
t=1 t=1

Thus ¢ is an e-optimal strategy for column.

5. MAXIMUM MuULTICOMMODITY FLOW

G = (V, E) is a directed graph with n vertices and m edges. We are also given a
capacity function ¢ : E — R™ and k pairs of source and sink. We want to maximize
the total flow. Let P be the set of all simple paths from (s;,t;) for some i € [k].
We show a (1 — €)-approximation algorithm. We will use the rewards version of
the Multiplicative Updates Algorithm. We will have an “expert” for each edge. Let
n = 5. We give each edge a weight w! and initialize it to 1. In each iteration ¢, we
find a shortest path p! with respect to the edge weights lcu—: We route ¢! units of
flow on the path p' where ¢! = min e c.. ‘

Define r! = g € [0,1] if e € p' and otherwise, r! = 0. We stop when there is an
edge e € E such that f—z > 1’;‘7—2’”

Analysis: Let f° be the optimal flow, and F°P* = - _, f;?*, Where f, is
the flow along the path p. Also let F' = ZtT_l ct. By corrolary 1.2.2:

d d lnm
D prtz(-m) ri-
t=1 =1

It also holds that:

t

T T w,
}:pt-rt:E:Zeepfwea 2: eEpZ
t=1 ZeeE we

t=1 — Deep Wi

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 5

T
- Yoo _F
- Fopt Fopt
Let p € P be a shortest path with respect to the edge weights ’é’—e We get that:

opt

/ opt .
ZeGE We ZeeE We ZeEp’ % o Zp’EP f;o/ ZeEp’ % opt __ ropt
> = Z fp’ =F

ZeEp Z): B ZeEp %: ZeEp 72): h p'EP
Let C = max.cp f—e It follows that:
F f Inm
> frt > (1 — L >(1-2
Fopt—zt:pr > (n)rgleaEXCe p > ([1-2)C

When the algorithm terminates C' > h;];”, we scale down the flow by C' and
achieve a legal flow (a flow that satisfies the capacity constraints).
F
— > (1—-2n)FP = (1 —)PP
C
5.1. Bounding the number of iterations. We stop when C' > h;,;". Each iter-
ation increases C by at least 1. Therefore, the number of iterations is bounded by
m[h:;"] Let Ts,(m) be the time of finding a shortest path on a graph with O(m)
edges. Then the total running time is bounded by O (k:mlngsp(m)).

€

