
THE MULTIPLICATIVE WEIGHT UPDATES METHOD

URI ZWICK AND HAIM KAPLAN

1. The basic Binary Setting

On each of T days, n experts predict �up� or �down�, and we have have to make
a decision according to their predictions.

1.1. The Weighted Majority Algorithm. We choose a parameter 0 ≤ η ≤ 1
2

and assign each expert i an initial weight of wti = 1. At the end of the day we
decide �up� if and only if

∑
i predicted up w

t
i ≥

∑
i predicted down w

t
i . Then we

update the weights:

wt+1
i =

{
wti i was correct on day t

(1− η)wti else

We also de�ne the cost of each expert at day T to be the number of mistakes he
did until day T. The cost of the algorithm is de�ned simmilarily.

Theorem 1. For every expert it holds that:

costT (WMη) ≤ 2(1 + η)costt(exp) +
2 ln(n)

η

Proof. Let W t =
∑n
i=1 w

t
i . If MWη makes a mistake in day t, then the weighted

majority of the experts predicted wrong. Therefore,

W t+1 ≤
(
1

2
+

1

2
(1− η)

)
W t =

(
1− η

2

)
W t

�

Since W 1 = n we have (by induction):

W t+1 ≤ n(1− η

2
)cost

t(WMη)

The same analysis yields that: WT+1 ≥ wt+1
exp = (1− η)costt(exp).

(1− η)cost
t(exp) ≤W t+1 ≤

(
1− η

2

)costt(WMη)

costt(exp) ln(1− η) ≤ costt(WMη) ln
(
1− η

2

)
+ ln(n)

costt(WMη) ≤
ln(1− η)
ln
(
1− η

2

)costt(exp) + ln(n)

− ln(1− η
2)

costt(WMη) ≤
η + η2

η
2

+
ln(n)
η
2

= 2(1 + η)costt(exp) +
2 ln(n)

η

Notes written by Bar Aschner, all rights reserved for Arazim c©, except for the right to remain

silent, that is saved for Marco.

1

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 2

On the last inequallity we used the fact that x ≤ − ln(1 − x) ≤ x + x2 for
x ∈

(
0, 12
)
.

2. The General Setting

On each day we choose a distribution over the experts. Then the cost of each
expert (which is a real number in [−1, 1]) is revealed and we pay the expected cost
according to the distribution chosen.

We start by picking a parameter η ∈
[
0, 12
]
. The weight of each expert i at day

t is wti . We also get the distribution over the experts:

pt =
(wt1 . . . w

t
n)

W t

Where W t =
∑
i w

t
i . m

t
i is the cost of expert i at day t. At the end of the day

we update the costs by getting wt+1
i = wti (1− ηmt

i). The cost for the algorithm
at day t is pt ·mt. We de�ne the cost of each expert and the cost of the algorithm

to be the sum of the costs up to day t. That is, costt(MWη) =
∑T
t=1 p

t ·mt and

cost(exp) =
∑T
t=1m

T
exp.

Theorem 2. For every expert it holds that:

costt(MWη) ≤ costt(exp) + η

T∑
t=1

(mt
i)

2 +
ln(n)

η

Proof.

ln
W t+1

W 1
=

T∑
t=1

ln
W t+1

W t
=

T∑
t=1

ln

(
n∑
i=1

pti(1− ηmt
i)

)
=

T∑
t=1

ln(1−ηpt·mt) ≤ −η
T∑
t=1

pt·mt

�

On the last inequallity we used the fact that ln(1− x) ≤ −x for x ≤ 1
2 .

On the other hand:

ln
W t+1

W 1
≥
wt+1
exp

n
=

T∑
t=1

ln(1− ηmt
i)− ln(n)

≥ ln(n)− η
T∑
t=1

mt
i − η2

T∑
t=1

(mt
i)

2

We get the result by combining these inequalities.

Corollary 3. If p is a distribution and |mt| is the vector obtained by taking the

absolute value in each coordinate. Then:
T∑
t=1

ptmt ≤
T∑
t=1

p ·mt + η

T∑
t=1

p · |mt|+ ln(n)

η

If we have a reward rt instead of cost, and updated by using the rule wt+1
i =

wti(1 + ηrti) then:

T∑
t=1

pt · rt ≥
T∑
t=1

rti − η
T∑
t=1

(
rti
)2 − ln

η

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 3

3. Learning A Linear Classfier

We are given a set of m points a1 . . . am ∈ Rn. Suppose that there is a non-
negative vector x ∈ Rn such that aj · x ≥ ε for all j. The algorithm �nds a
non-negative vector u ∈ Rn such that 1 · u = 1 and aj · u ≥ 0 for all j.
The Algorithm: We de�ne ρ = maxj |aj |∞ .Select η = ε

2ρ . We will have an

�expert� for each coordinate. Run the MWη algorithm. In each iteration, if pt is a
good classi�er, stop. Otherewise, let j be the �rst index such that pt · aj < 0. Let
mt = −ajρ .

Theorem 4. This algorithm stops after at most 4ρ2

ε2 ln(n) iterations.

Proof.
T∑
t=1

ptmt ≤
T∑
t=1

x ·mt + η

T∑
t=1

x · |mt|+ ln(n)

η

�

For every day t ≤ T we have a point a(t) such that aj(t) ·pt < 0 and mt = −a(t)ρ .

T∑
t=1

pt · −aj(t)
ρ

≤
T∑
t=1

x · −a(t)
ρ

+ η

T∑
t=1

x · |a(t)|
ρ

+
ln(n)

η

0 ≤ −εT
ρ

+ ηT +
ln(n)

η

ηT ≤ ln(n)

η

T ≤
(
2ρ

ε

)2

ln(n)

As required.

4. Zero Sum Games

We talk about 2-player (ROW and COLUMN) games with randomized (mixed)
startegies. Let A be a matrix. ROW has a disribution p over the rows of A,
COLUMN has a distribution q over the columns of A. The expected payo� (row
pays column) is A[p, q] = ptAq =

∑
i,j piqjA[i, j] .

4.1. Von Neumann's Theorem. It holds that:

min
p

max
q
A[p, q] = max

q
min
p
A[p, q] = min

p
max
j
A[p, j] = max

q
min
i
A[i, q]

4.2. Solving Zero-Sum Games Approximately. We want to approximate the
game's value and the optimal strategies. We assume that Aij ∈ [0, 1] for all i, j.
Let v∗ = val(A) and ε > 0. p, q are ε-optimal strategies if maxj A[p, j] ≤ v∗ + ε
and miniA[i.q] ≥ v∗ − ε. We have an expert for each of the n rows of A. In each
iteration t, the algorithm produces a distribution pt. The cost vector mt is the
column jt of A which maximizes A[pt, j]. Note that: p ·mt = A[pt, jt] ≥ v∗.

Theorem 5. If MWη is run with η = ε
2 for

4 ln(n)
ε2 iterations, then the best strategy

obtained is ε optimal for ROW. If A has m columns then the running time is

O
(
mn ln(n)

ε2

)
.

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 4

Proof. First, we bound the running time of the algorithm.

T∑
t=1

A(pt, jt) ≤ (1 + η)

T∑
t=1

A(p∗, jt) +
ln(n)

η

v∗ ≤ 1

T

T∑
t=1

A(pt, jt) ≤ v∗ + η +
ln(n)

ηT

�

and if T = 4 ln(n)
ε2 then:

v∗ ≤ 1

T

T∑
t=1

A(pt, jt) ≤ v∗ + ε

Now we show how to �nd an ε-optimal strategy for ROW. By the inequality
above, there exists t such that A(pt, jt) = minj A(p

t, j) ≤ v∗ + ε. Thus, if t
minimizes A(pt, jt) then pt is an ε-optimal strategy for ROW. An ε-optimal strategy

for COLUMN can also be found. Let q be such that qj =
|{t; jt=j}|

T . For every i,

1

T

T∑
t=1

A(i, jt) = A(i, q)

Therefore we get that:

v∗ ≤ 1

T

T∑
t=1

A(pt, jt) ≤ (1 + η)
1

T

T∑
t=1

A(i, jt) +
lnn

ηT
≤ A(i, q) + ε

Thus q is an ε-optimal strategy for column.

5. Maximum Multicommodity Flow

G = (V,E) is a directed graph with n vertices and m edges. We are also given a
capacity function c : E → R+ and k pairs of source and sink. We want to maximize
the total �ow. Let P be the set of all simple paths from (si, ti) for some i ∈ [k].
We show a (1 − ε)-approximation algorithm. We will use the rewards version of
the Multiplicative Updates Algorithm. We will have an �expert� for each edge. Let
η = ε

2 . We give each edge a weight wte and initialize it to 1. In each iteration t, we

�nd a shortest path pt with respect to the edge weights
wte
ce
. We route ct units of

�ow on the path pt where ct = mine∈pt ce.

De�ne rte =
ct

ce
∈ [0, 1] if e ∈ pt and otherwise, rte = 0. We stop when there is an

edge e ∈ E such that fe
ce
≥ lnm

η2 .

Analysis: Let fopt be the optimal �ow, and F opt =
∑
p∈P f

opt
p , Where fp is

the �ow along the path p. Also let F =
∑T
t=1 c

t. By corrolary 1.2.2:

T∑
t=1

pt · rt ≥ (1− η)
T∑
t=1

rte −
lnm

η

It also holds that:

T∑
t=1

pt · rt =
T∑
t=1

∑
e∈pt w

t
e
ct

ce∑
e∈E w

t
e

=

T∑
t=1

ct
∑
e∈pt

wte
ce∑

e∈E w
t
e

THE MULTIPLICATIVE WEIGHT UPDATES METHOD 5

≤
∑T
t=1 c

t

F opt
=

F

F opt

Let p ∈ P be a shortest path with respect to the edge weights we
ce
. We get that:∑

e∈E we∑
e∈p

we
ce

≥
∑
e∈E we

∑
e∈p′

fopt
p′

ce∑
e∈p

we
ce

=

∑
p′∈P f

opt
p′
∑
e∈p′

we
ce∑

e∈p
we
ce

≥
∑
p′∈P

foptp′ = F opt

Let C = maxe∈E
fe
ce
. It follows that:

F

F opt
≥
∑
t

ptrt ≥ (1− η)max
e∈E

fe
ce
− lnm

η
≥ (1− 2η)C

When the algorithm terminates C ≥ lnm
η2 , we scale down the �ow by C and

achieve a legal �ow (a �ow that satis�es the capacity constraints).

F

C
≥ (1− 2η)F opt = (1− ε)F opt

5.1. Bounding the number of iterations. We stop when C ≥ lnm
η2 . Each iter-

ation increases C by at least 1. Therefore, the number of iterations is bounded by
md lnmη2 e. Let Tsp(m) be the time of �nding a shortest path on a graph with O(m)

edges. Then the total running time is bounded by O
(
km lnm

ε2 Tsp(m)
)
.

